Hip Roof Models

Hip Roof Model : Hip Run = 1

Hip Run = 1

Trigonometric Scaling

The model of the Hip Roof may be drawn to any scale. All angles remain equal, all lengths remain proportional. Trigonometric scaling creates right triangles which readily produce formulas relating angles on different faces of the model.

Hip Run = 1
Hip Length $=1 \div \cos$ Hip Pitch Angle
Hip Rise $=$ Common Rise = tan Hip Pitch Angle
Common Run = sin Deck Angle
Common Length $=\sin$ Deck Angle $\div \cos$ Common Pitch Angle
Eave = cos Deck Angle

Development of Hip Roof Model : Hip Run = 1

The triangles in the previous diagram have been juxtaposed about the triangle of the Deck Angle.
All lengths may be multiplied by any convenient factor to create a development with a workable scale.
Edges highlighted the same color are of equal length; most of the development can be drawn using only a compass and straightedge.

Hip Roof Model : Common Run = 1

Trigonometric Scaling

The model of the Hip Roof may be drawn to any scale. All angles remain equal, all lengths remain proportional. Trigonometric scaling creates right triangles which readily produce formulas relating angles on different faces of the model.

Common Run = 1
Common Length $=1 \div \cos$ Common Pitch Angle
Hip Rise $=$ Common Rise $=$ tan Common Pitch Angle
Hip Run $=1 \div \sin$ Deck Angle
Hip Length $=\tan$ Common Pitch Angle \div sin Hip Pitch Angle
Eave $=1 \div \tan$ Deck Angle

Development of Hip Roof Model : Common Run = 1

The triangles in the previous diagram have been juxtaposed about the triangle of the Deck Angle.
All lengths may be multiplied by any convenient factor to create a development with a workable scale.
Edges highlighted the same color are of equal length; most of the development can be drawn using only a compass and straightedge.

Hip Roof Models to Scale

J. Bartok

