## HIP / VALLEY KERNELS

## Dihedral angle turned through an angle of revolution

Valley kernel extracted, and compared to Hip kernel.

The deck is defined as a level plane passing through the intercept of the ridges.

Let the radius vector
(common run) = 1 :

$$
\tan \mathbf{R 1}=\tan \mathbf{S S} /(1 / \cos (90-\mathbf{D D}))
$$

$$
=\tan \mathbf{S S} \cos (90-\mathbf{D D})
$$

$$
=\tan \mathbf{S S} \sin \mathbf{D} \mathbf{D}
$$

Similarly:


## VALLEY ANGLE RELATIONSHIPS:

R4B, R5B, A5B, DD, R1

## Extracting a "Bird's-Mouth" Kernel at the Valley Peak

Kernel shown as peak.


Kernel with the angles labeled. Remember that the standard model is a Hip kernel (refer to the diagram on the previous page). The angles located at the foot, or base, of a hip rafter will be found at the peak of a valley rafter.

For future reference, also note the location of dihedral angle 90 - A5B, which governs the value of the saw blade setting. Like angle C5 on the actual roof, A5B lies along the line between the "roof plane" of the kernel and the plumb plane through the long axis of the "hip" or "valley" on the kernel. Alternatively, consider the angle R4B as the miter angle, and $90-\mathbf{R 1}$ as the bevel angle.

# VALLEY RAFTER ANGLE FORMULAS: 

R4B, R5B, A5B, DD, R1

At this point, we have formulas for the rotation of one angle through another angle.

Angles R1 and DD are known quantities. Given this information, we can calculate R4B, the miter angle on the bottom face or shoulder of the valley rafter; simply rotate angle DD through angle R1:
$\tan \mathrm{R} 4 \mathrm{~B}=\tan \mathrm{DD} \cos \mathrm{R} 1$
Angle R5B is the complement of the angle on the plane created by cutting a compound angle. We can find the value of R5B by rotating angle R1 through angle DD:
$\tan \mathbf{R 5 B}=\tan \mathbf{R 1} \cos \mathbf{D D}$
Another solution:
If cos (Compound Face Angle) $=\cos$ Miter cos Bevel then $\cos (90-\mathbf{R 5 B})=\cos \mathbf{R 4 B} \cos (90-\mathbf{R 1})$ and $\sin$ R5B $=\cos$ R4B $\sin$ R1

As for angle A5B:
Since tan (Blade Angle) = sin Miter / tan Bevel
$\tan \mathbf{A 5 B}=\sin \mathbf{R 4 B} / \tan (90-\mathbf{R 1})$ $=\sin \mathbf{R 4 B} \tan \mathbf{R 1}$

By comparing the angles in the "Bird's-mouth" kernel to the Valley and Hip kernels, and making appropriate substitutions, it is possible to find further relationships. However, for the time being, instead of dealing with abstract models that may be difficult to relate to the real world, the focus will be on the simplest calculations and geometry that may be derived from an examination of the proposed cut.

## VALLEY RAFTER ANGLE FORMULAS:

R4P, R5P, A5P, 90 - DD, R1


Using the angle rotation formulas:

$$
\begin{aligned}
\tan \mathbf{R 4 P} & =\tan (90-\mathbf{D D}) \cos \mathbf{R} \mathbf{1} \\
& =\cos \mathbf{R} \mathbf{1} / \tan \mathbf{D D} \\
\tan \mathbf{R 5 P} & =\tan \mathbf{R} \mathbf{\operatorname { c o s } ( 9 0 - \mathbf { D D } )} \\
& =\tan \mathbf{R} 1 \sin \mathbf{D D}
\end{aligned}
$$

To determine the value of A5P, substitute the appropriate quantities in the equation for the saw blade angle:

If tan (Blade Angle) $=$ sin Miter / tan Bevel then $\tan \mathbf{A 5 P}=\sin \mathbf{R 4 P} / \tan (90-\mathbf{R 1})$ $=\sin \mathbf{R 4 P} \tan \mathbf{R 1}$

## Notes re: Angle Formulas

When working with a framing square, the calculations for miter, bevel and cutting angles are best if given in terms of the tangent of the required angle. Angles are expressed as a value "over-12", and since the tangent = rise / run, we have a trig function of a required angle suited for direct use on the square.


## Generally:

Rise $=$ Run $X \tan$ (ANGLE)
For "over-12" measurements:
Rise $=12 \mathrm{X} \tan$ (ANGLE)

If using a programmable calculator or spreadsheet to determine angular values, the tangent of an angle is not necessarily the best mode of calculation, since trig functions change sign according to quadrant. Recall that given a Total Deck Angle > 90 degrees, it is possible for either DD or $\mathbf{D}$ to exceed 90 degrees. Subsequent calculations will be affected by the trig function chosen; the cosine of the angle always returns a positive value for the angles listed below.

The formulas were resolved using linear algebra, and are given without proof. Relationships between the peak and base values may be supplementary, rather than complementary, depending on the value of DD (base or peak) entered. Dihedral angle related values C5 and A5 may be 90 plus or minus the angle.

$$
\begin{aligned}
& \cos (90 \pm \mathbf{C} 5)=\sin \mathbf{S S} \cos \mathbf{D D} \\
& \cos \mathbf{R 1}=\cos \mathbf{S S} / \sin (90 \pm \mathbf{C 5}) \\
& \cos \mathbf{P 2 B}=\cos \mathbf{D D} \cos \mathbf{R 1} \\
& \cos (90 \pm \mathbf{A 5 B})=\sin \mathbf{R} 1 \sin \mathbf{D D} \\
& \cos \mathbf{R 5 B}=\cos \mathbf{R 1} / \sin (90 \pm \mathbf{A 5 B}) \\
& \cos \mathbf{R 4 B}=\cos \mathbf{D D} / \sin (90 \pm \mathbf{A 5 B})
\end{aligned}
$$

