SQUARE CUT ANGLES:

General Model for Rafter and Purlin Angles

The same kernel geometry was required to solve backing angle $\mathbf{C 5}$, and the purlin related angles. Lines $\tan \mathbf{D D}, \tan$ R1, and the unit vector are mutually perpendicular. The planes of angles A7, C5, Q1 and DD are all perpendicular to the plane of Hip/Valley pitch angle R1; that is, all of the planes created are at right angles to the side face of the Hip/Valley.

Imagine the plane of angle A7, the plumb backing angle, rotating about line \tan DD. The right angle shown must remain a right angle, but as the triangle assumes different positions, the angle at the peak, 90-A7, assumes values 90-C5, Q1, and finally DD.

Sketch of housings on Valley rafter : The square cuts are made along the same lines and create the same angles as on the theoretical model.

SQUARE CUT ANGLES:

Rafter superimposed on Model

SQUARE CUT ANGLES:

Purlin superimposed on Model

Purlin extracted

SQUARE CUT ANGLES:

Extracting Standard Hip Kernels from the General Model

A variety of formulas, in terms of the tangent of the required angle. Using the Standard Hip kernel relations as templates, the process may be repeated to obtain equations in terms of the sines or cosines of any angle.

$\tan \mathbf{Q 1}=\cos \mathbf{R 2} / \tan \mathbf{C} 5$
$\tan \mathbf{P 4 B V}=\sin \mathbf{Q} 1 \tan \mathbf{R 2}$
$\tan \mathbf{A 8}=\sin \mathbf{C} 5 \tan \mathbf{R 2}$

Rafter Kernel:

Rafter Kernel:
$\tan \mathbf{A} 7=\tan \mathbf{S S} \cos \mathbf{D D}$
$\tan \mathbf{P 5 B V}=\sin \mathbf{A} 7 \tan \mathbf{D D}$ $\tan \mathbf{P 5}=\cos \mathbf{S S} \tan \mathbf{D} \mathbf{D}$

Notes re: Square Cut Angles

Leaving the tenoned members cut at their "natural" angles causes forces within the member to act on the acute-angled edges. Transferred to the mortise, the forces tend to split the wood parallel to the grain. Square cutting the tenons removes the fragile "feather edges"; the corresponding mortise and housing cuts provide proper bearing surfaces to distribute the forces acting within the joint.

SQUARE CUT KERNELS:

Common Rafter meets Valley

 Extracting kernels from "the stick"

The plane of the square cut is equivalent to a section through the Valley rafter along plumb line 90 -SS.

Equivalent to the kernel
extracted from the General
Square Cut Model.

The plane of the square cut follows the bottom face of the Valley rafter. Compare to the kernel extracted from the General Hip/Valley Model.

SQUARE CUT KERNELS:

