GENERAL DECK ANGLE EQUATIONS
Hip Roof Model and Definition of Angles

Trigonometric Model of Hip Roof

R1: Hip Pitch Angle
The Hip Pitch Angle links the Main and Adjacent spans of the Hip Roof

GENERAL DECK ANGLE EQUATIONS

Unit radius vector method

Isometric Projection

The unit radius vector returns a value for the rise equal to the tangent of Hip Pitch Angle R1.

GENERAL DECK ANGLE EQUATIONS

Unit radius vector method

$\tan \mathbf{S S}=\tan \mathbf{R 1} \div \sin \mathbf{D D}$, therefore $\tan \mathbf{R 1}=\tan \mathbf{S S} \sin \mathbf{D D}$
$\tan \mathbf{S}=\tan \mathbf{R 1} \div \sin \mathbf{D}$, therefore $\tan \mathbf{R} \mathbf{1}=\tan \mathbf{S} \sin \mathbf{D}$
$\tan \mathbf{S S} \sin \mathbf{D D}=\tan \mathbf{S} \sin \mathbf{D}$
$\tan \mathbf{S S} \div \tan \mathbf{S}=\sin \mathbf{D} \div \sin \mathbf{D} \mathbf{D}$
$\mathbf{D}=\mathbf{W}-\mathbf{D D}$,
therefore $\sin \mathbf{D}=\sin (\mathbf{W}-\mathbf{D D})$

$$
=\sin \mathbf{W} \cos \mathbf{D} \mathbf{D}-\cos \mathbf{W} \sin \mathbf{D} \mathbf{D}
$$

(Sine of Difference of Angles)
$\tan \mathbf{S S} \div \tan \mathbf{S}=\frac{\sin \mathbf{W} \cos \mathbf{D D}-\cos \mathbf{W} \sin \mathbf{D D}}{\sin \mathbf{D D}}$

$$
=(\sin \mathbf{W} \div \tan \mathbf{D D})-\cos \mathbf{W}
$$

Therefore, $\cot \mathbf{D D}=\frac{(\tan \mathbf{S S} \div \tan \mathbf{S})+\cos \mathbf{W}}{\sin \mathbf{W}}$

$$
\text { and } \tan \mathbf{D D}=\frac{\sin \mathbf{W}}{(\tan \mathbf{S S} \div \tan \mathbf{S})+\cos \mathbf{W}}
$$

Note : If $\mathbf{W}=90^{\circ}$, then $\sin \mathbf{D}=\cos \mathbf{D D}$, and $\tan \mathbf{D D}=\tan \mathbf{S} \div \tan \mathbf{S S}$ Also, if $\mathbf{W}=90^{\circ}, \cos \mathbf{W}=0, \sin \mathbf{W}=1$, and $\tan \mathbf{D D}=1 \div(\tan \mathbf{S S} \div \tan \mathbf{S}+0)=\tan \mathbf{S} \div \tan \mathbf{S S}$
For any \mathbf{W}, if $\mathbf{S S}=\mathbf{S}$, then $\tan \mathbf{D D}=\tan \mathbf{D}=\frac{\sin \mathbf{W}}{1+\cos \mathbf{W}}$

GENERAL DECK ANGLE EQUATIONS

Arcos and arctan fomulas from trig functions of \mathbf{W}

Plan
Trigonometric functions of \mathbf{W} are a consequence of the chosen unit length.

GENERAL DECK ANGLE EQUATIONS

Arcos and arctan fomulas from trig functions of \mathbf{W}

The quadrilateral formed by the deck angles in plan has supplementary opposite angles, and can therefore be circumscribed. The inscribed angles labeled DD must be equal, since they subtend the same arc.

For any \mathbf{W}, if $\mathbf{S S}=\mathbf{S}$, then $\tan \mathbf{D D}=\frac{\sin \mathbf{W}}{1+\cos \mathbf{W}}$
If $\mathbf{D D}=\mathbf{D}$, then:
$\sin \mathbf{W}=\sin 2 \mathbf{D D}=2 \sin \mathbf{D D} \cos \mathbf{D D}$
$1+\cos \mathbf{W}=1+\cos 2 \mathbf{D D}=2 \cos ^{2} \mathbf{D D}$
Therefore, $2 \sin \mathbf{D D} \cos \mathbf{D D} \div 2 \cos ^{2} \mathbf{D D}=\tan \mathbf{D D}$
(Double angle formulas)
The longer and less elegant $\cos \mathbf{D D}$ formula on the previous page always returns a positive value if $\mathbf{D D}$ or \mathbf{D} exceed 90 degrees.

