An ALTERNATE MODEL for HIP / VALLEY RAFTERS:

An ALTERNATE MODEL for HIP / VALLEY RAFTERS:

Kernels of R4, R5 and A5 Angles

Kernels re-scaled to "Hip run" = 1: Compare the drawings below to the models extracted directly from the Valley rafter in the previous section, as well as the kernels extracted from the stick.

GENERAL HIP / VALLEY MODEL:

VALLEY meets RIDGE or HEADER VALLEY meets MAIN COMMON RAFTER VALLEY meets MAIN PURLIN

For the sake of clarity, only some of the major angles on the model faces have been labeled. Exploded views will show the remaining angles in more detail.

The planes that form the boundaries of the model (planes of R4 and $\mathbf{R 5}$ angles) are the same planes created by cutting a plane on the top of a post to conform to the bottom face of a Hip/Valley rafter. Expect R1, A5, R4, and R5 angles at Valley meets Post.

GENERAL HIP / VALLEY MODEL:

Kernels extracted from the general model

GENERAL HIP / VALLEY MODEL:

Kernels rotated and re-scaled

Valley peak meets Main
Purlin (opposite hand)

Valley foot meets Main Common Rafter

NOTES:

Three mutually perpendicular lines form one of the vertices (see "Purlin kernel extracted from Hip kernel"); the kernels may positioned with any face containing a right angle as the "deck". The angle arrangements shown above match those of the kernels extracted from the stick.

The kernels may be split along their respective dihedral angles: Valley peak meets Main Purlin along 90-C2, 90-C1 or P2, and Valley foot meets Main Common along 90-A5P, 90-DD or 90-P2. Each split produces an arrangement of angles as per a standard Hip kernel. The alternate exploded view depicts the kernels split along dihedral angles P2 and 90-P2.

Angles that upon casual inspection seem to have no direct connection to one another are now related through their respective kernels, which may be used for dimensioning as well as simply producing formulas. In addition, since the groups of angles are now defined, and a given angle occurs in more than one kernel, angular values may be determined empirically by developing the kernels using compass and straightedge only.

The sample equations given on the following page cover only a very few possible formulas.

VALLEY ANGLE FORMULAS:

Valley Peak meets Main Purlin	$\begin{gathered} \text { KNOWN } \\ \text { EQUATION } \end{gathered}$	Valley Foot meets Main Common Rafter
$\begin{aligned} & \tan R 2=\tan \mathbf{C} 5 \tan \mathbf{R} 3 \\ & \tan R 3=\tan \mathbf{2} / \tan \mathbf{C} 5 \end{aligned}$	(From "Extracting the Purlin kernel from the Hip kernel") $\operatorname{tanP1}=\tan S S \tan \mathrm{P} 2$	$\begin{aligned} & \tan \mathbf{R 1}=\tan \mathbf{C} 5 \tan (90-\mathbf{R 4 P}) \\ & \tan \mathbf{R} 4 \mathbf{P}=\tan \mathbf{C} 5 / \tan \mathbf{R} 1 \end{aligned}$
Divide the kernel along dihedral angle Divide the kernel along dihedral angle 90-C2, producing two standard Hip 90-A5P, producing two standard Hip kernels. Consider the kernel on the left kernels. Consider the kernel on the left hand side: hand side:		
$\begin{gathered} \cos C 1=\sin C 2 / \sin R 2 \\ \sin C 2=\sin R 2 \cos C 1 \end{gathered}$	$\operatorname{cosC} 1=\sin \mathrm{C} 5 / \sin \mathrm{P} 1$	$\begin{gathered} \hline \text { CosDD }=\sin \mathbf{A 5 P} / \sin R 1 \\ \sin \mathbf{A 5 P}=\sin \mathbf{R} 1 \cos \mathbf{D D} \end{gathered}$
$\begin{gathered} \cos (90-\mathbf{Q} 2)=\cos R 3 / \cos \mathbf{C} 1 \\ \sin Q 2=\cos \mathbf{R} 3 / \cos \mathbf{C} 1 \end{gathered}$	$\operatorname{cosR2}=\operatorname{cosP2} / \cos \mathbf{C} 1$	$\begin{aligned} & \operatorname{cosR5P} \\ & \quad=\cos (90-R 4 P) / \operatorname{cosDD} \\ & \cos 5 P=\sin R 4 P / \cos D D \end{aligned}$
```tan(90-R2) = tan(90-C2)}\operatorname{sin}(90-\textrm{R}3 tanC2 = tanR2 cosR3```	```(From Standard Hip kernel) tanR1 = tanSS sinDD```	$\begin{aligned} & \tan (90-R 1) \\ & \quad=\tan (90-A 5 P) \sin \mathbf{R 4 P} \\ & \tan A 5 P=\tan R 1 \sin R 4 P \end{aligned}$

Consider the standard Hip kernels created on the right hand side:

$\begin{aligned} & \tan (90-\mathbf{C} 5) \\ & =\tan (90-\mathrm{C} 2) \sin \mathrm{R} 3 \\ & \tan \mathbf{C} 2=\tan \mathbf{C} 5 \sin \mathrm{R} 3 \end{aligned}$	$\tan \mathbf{R 1}=\operatorname{tanSS} \sin \mathbf{D D}$	$\begin{aligned} & \tan (90-\mathbf{C} 5) \\ & =\tan (90-\mathbf{A 5 P}) \sin (90-\mathbf{R 4 P}) \\ & \tan \mathbf{A 5 P}=\tan \mathbf{C 5} \cos \mathbf{R 4 P} \end{aligned}$
```tan(90-P2) = sin(90-C5) / tanR3 tanR3 = tanP2 cosC5```	$\operatorname{tanC5}=\sin \mathrm{R} 1 / \tan \mathrm{DD}$	$\begin{aligned} & \operatorname{tanP2} \\ & =\sin (90-C 5) / \tan (90-R 4 P) \\ & \tan \mathbf{R} 4 P=\tan \mathbf{P} 2 / \cos \mathbf{C} 5 \end{aligned}$

The process may be continued, using any known formula as a template (for example, tanP2 = cosSS / tanDD), and substituting cognate angles from the unsolved kernel. Remember to compensate for trig functions of complementary angles. The next diagram depicts an alternate method of extracting Hip kernels from the general model. Rotate any appropriate face to the deck, and apply the methods outlined above to obtain solutions.

GENERAL HIP / VALLEY MODEL:

Standard kernels extracted from General Model
 (kernels re-scaled for clarity)

EXTRACTING KERNELS from "the STICK":

Valley Peak meets Main Purlin
DD projected to bottom shoulder of Valley is $90-\mathbf{R 3}$

EXTRACTING KERNELS from "the STICK":

Valley Peak meets Header
DD projected to bottom plane of

Valley Peak meets Valley Peak
D projected to bottom face of Valley is R4Ba

