COMPOUND JOI NT:

Alternate Vector Analysis Solution

Convergence vector, \mathbf{r}, lies on the altitude of the cone, and meets the Ridge vectors at the vertex.
The Ridge vectors are of equal magnitude.

VECT OR DIAGRAM:

Co-ordinates of Points for Angle Calculations

(\mathbf{a}, \mathbf{b}) means the angle between vectors \mathbf{a} and \mathbf{b}, solved using the equation:
$(\mathbf{a}, \mathbf{b})=\operatorname{arcos} \pm[(\mathbf{a} \cdot \mathbf{b}) /|\mathbf{a}||\mathbf{b}|]$
$\mathbf{r}=\mathbf{a} \times \mathbf{b}$ may be evaluated using the determinants of the matrices:
$\boldsymbol{x}_{\mathbf{r}}=\left|\begin{array}{ccc}1 & 0 & 0 \\ \boldsymbol{x}_{\mathrm{a}} & \boldsymbol{y}_{\mathrm{a}} & z_{\mathrm{a}} \\ \boldsymbol{x}_{\mathrm{b}} & \boldsymbol{y}_{\mathrm{b}} & \boldsymbol{z}_{\mathrm{b}}\end{array}\right| \quad \boldsymbol{y}_{\mathbf{r}}=\left|\begin{array}{ccc}0 & 1 & 0 \\ \boldsymbol{x}_{\mathrm{a}} & \boldsymbol{y}_{\mathrm{a}} & \boldsymbol{z}_{\mathrm{a}} \\ \boldsymbol{x}_{\mathrm{b}} & \boldsymbol{y}_{\mathrm{b}} & \boldsymbol{z}_{\mathrm{b}}\end{array}\right| \quad \boldsymbol{z}_{\mathbf{r}}=\left|\begin{array}{ccc}0 & 0 & 1 \\ \boldsymbol{x}_{\mathrm{a}} & \boldsymbol{y}_{\mathrm{a}} & z_{\mathrm{a}} \\ \boldsymbol{x}_{\mathrm{b}} & \boldsymbol{y}_{\mathrm{b}} & z_{\mathrm{b}}\end{array}\right|$

CALCULATION of ANGLES:

($\mathbf{m j}, \mathbf{r j}$) means the dihedral angle between two planes, defined by the cross products $\mathbf{m} \times \mathbf{j}$ and $\mathbf{r} \times \mathbf{j}$ of vectors which lie on the planes of interest.

Angle between Indined Deck and Actual Deck:
$(\mathbf{r},-\mathbf{k})=23.18011$
Angles at $8 / 12$ peaks:
$(\mathbf{r}, \mathbf{m})=73.83926$
$(\mathbf{r}, \mathbf{n})=73.83926 \quad$ All R1 angles at feet
Angles at Beam ends: $\quad=16.161$
$(\mathbf{r}, \mathbf{i})=73.83924$
$(\mathbf{r}, \mathbf{j})=73.83924$
Vectors perpendicular to Roof planes:
$\mathbf{j} \times \mathbf{i}=-\mathbf{k}=(0,0,-1) \quad \mathbf{j i}, \perp$ Beam plane
$\mathbf{m} \times \mathbf{j}=(.55470,0,-.83205)$
$\mathbf{m j}, \perp$ Common plane
$\mathbf{n} \times \mathbf{m}=(.46154, .46154,-.69231)$
$\mathbf{n m}, \perp$ Rafter plane
$\mathbf{i} \times \mathbf{n}=(0, .55470,-.83205)$
in, \perp Common plane
Vectors perpendicular to Planes of Convergence:
$\mathbf{r} \times \mathbf{i}=(0,-3.35641,-1.01624)$
ri, \perp Beam diameter
$\mathbf{r} \times \mathbf{j}=(3.35641,0,1.01624)$
$\mathbf{r j}, \perp$ Beam diameter
$\mathbf{r} \times \mathbf{m}=(-.56371,3.35641, .84556)$
$\mathbf{r m}, \perp$ Rafter diameter
$\mathbf{r} \times \mathbf{n}=(-3.35641, .56371,-.84556)$
rn, \perp Rafter diameter
Backing Angle complements and Backing Angles:
Dihedral angle: C5 Dihedral angle:
$(\mathbf{j i}, \mathbf{r i})=73.15495 \quad 16.845$
$(\mathbf{n m}, \mathbf{r m})=77.82788$

C5

$(\mathbf{j i}, \mathbf{r j})=73.15495 \quad 16.845$
$(\mathbf{n m}, \mathbf{r n})=77.82788$
12.172
$(\mathbf{m j}, \mathbf{r j})=73.15498 \quad 16.845$
$(\mathbf{i n}, \mathbf{r n})=73.15498$
12.172
$(\mathbf{m j}, \mathbf{r m})=73.15498 \quad 16.845$
$(\mathbf{i n}, \mathbf{r i})=73.15498$
16.845
16.845

TRIGONOMETRIC S OLUTIONS:

Arcos and Arcsin Forms of Equations
$\cos \mathbf{S S}=\cos \mathbf{R 1} \cos \mathbf{C 5}$
The ji Beam plane, mj Common plane and in Common
plane values may be solved using:
$\mathbf{S S}=\operatorname{arcos}(\cos 16.161 \cos 16.845)=23.180$
nm Rafter plane:
$\mathbf{S S}=\operatorname{arcos}(\cos 16.161 \cos 12.172)=20.134$
$\cos \mathbf{D D}=\sin \mathbf{C 5} / \sin \mathbf{~ S S}$
$\mathbf{j i}, \mathbf{m j}$, and in planes:
$\mathbf{D D}=\operatorname{arcos}(\sin 16.845 / \sin 23.180)=42.591$
nm Rafter plane:
$\mathbf{D D}=\operatorname{arcos}(\sin 12.172 / \sin 20.134)=52.226$
$\sin \mathbf{P 2}=\cos \mathbf{R 1} \cos \mathbf{D D}$
$\mathbf{j i}, \mathbf{m j}$, and in planes:
$\mathbf{P 2}=\arcsin (\cos 16.161 \cos 42.591)=45.000$ nm Rafter plane:
$\mathbf{P 2}=\arcsin (\cos 16.161 \cos 52.226)=36.039$
Alternate DD formulas:
$\sin \mathbf{D D}=\tan \mathbf{R 1} / \tan \mathbf{S S}$
tan $\mathbf{D D}=\sin \mathbf{R 1} /$ tan $\mathbf{C 5}$
Alternate $\mathbf{P 2}$ formulas:
$\cos \mathbf{P 2}=\sin \mathbf{R 1} / \sin \mathbf{S S}$
$\cos \mathbf{P 2}=\sin \mathbf{D D} / \cos \mathbf{C 5}$

SUMMARY:

Initial calculations are as per LBN \# 40 artide. The angles discussed are with respect to the I ndined deck.

By definition, Convergence vector \mathbf{r} is common to all Planes of Convergence. All Ridge vectors $\mathbf{i}, \mathbf{j}, \mathbf{m}$ and \mathbf{n}, as well as \mathbf{r}, pass through a common point at the intercept of the ridge lines.

Evaluate the 90-R1 angles between the Ridge vectors and \mathbf{r}. All $\mathbf{R 1}$ angles mus \dagger be equal.

Taking the cross products of successive pairs of Ridge vectors yields vectors perpendicular to the Roof planes. The cross product of each Ridge vector and \mathbf{r} produces a vector perpendicular to the Planes of Convergence through the log diameters.

The dihedral angles between the Roof planes and planes of Conver gence, 90-C5, can be calculated using the formula: $(\mathbf{a}, \mathbf{b})=\operatorname{arcos} \pm[(\mathbf{a} \cdot \mathbf{b}) /|\mathbf{a}||\mathbf{b}|]$

Given values for R1 and C5, the simpler trigonometric equation cos $\mathbf{S S}=\cos \mathbf{R 1} \cos \mathbf{C 5}$ solves the Pitch angles of the Roof planes with respect to the I ndined deck. Angles DD and $\mathbf{P 2}$ may be solved; these angles must be equal at matching faces and edges.

For a Compound joint to be feasible:
All R1 (Bevel angles) must be equal.
All DD (Miter angles) at matching faces must be equal.
The sum of the $\mathbf{C 5}$ angles about a ridge line is constant.
The sum of the $\mathbf{P 2}$ angles between ridges is constant.
All Ridge vector endpoints on the Indined deck mus \dagger lie on a cirde.

